Previous exposure to coronavirus-caused colds may mean fewer COVID-19 symptoms
A study by Stanford University School of Medicine investigators hints that people with COVID-19 may experience milder symptoms if certain cells of their immune systems “remember” previous encounters with seasonal coronaviruses — the ones that cause about a quarter of the common colds kids get, reported the university.
These immune cells are better equipped to mobilize quickly against SARS-CoV-2, the coronavirus responsible for COVID-19, if they’ve already met its gentler cousins, the scientists concluded.
The findings may help explain why some people, particularly children, seem much more resilient than others to infection by SARS-CoV-2, the coronavirus that causes COVID-19. They also might make it possible to predict which people are likely to develop the most severe symptoms of COVID-19.
The study, published online in Science Immunology, showed that killer T cells taken from the sickest COVID-19 patients exhibit fewer signs of having had previous run-ins with common-cold-causing coronaviruses. When a killer T-cell’s receptor notices a peptide on a cell’s surface that doesn’t belong there — for example, it’s from a protein produced by an invading microorganism — the T cell declares war. It multiplies furiously, and its numerous offspring — whose receptors all target the same peptide sequence — fire up to destroy any cell carrying these telltale-peptide indications of that cell’s invasion by a pathogenic microbe.
Some of the original killer T cell’s myriad daughter cells enter a more placid state, remaining above the fray. These “memory T cells” exhibit heightened sensitivity and exceptional longevity. They persist in the blood and lymph often for decades, ready to spring into action should they ever cross paths with the peptide that generated the wave of T-cell expansion that begat them. That readiness can save valuable time in stifling a previously encountered virus or a close cousin.
As the pandemic progressed, Mark Davis, PhD, Professor of Microbiology and Immunology and Director of Stanford’s Institute for Immunity, Transplantation and Infection, said, “A lot of people get very sick or die from COVID-19, while others are walking around not knowing they have it. Why?”
To find out, the researchers analyzed blood samples taken from healthy donors before the COVID-19 pandemic began, meaning they’d never encountered SARS-CoV-2 — although many presumably had been exposed to common-cold-causing coronavirus strains. The scientists determined the numbers of T cells targeting each peptide represented in the panel. They found that unexposed individuals’ killer T cells targeting SARS-CoV-2 peptides that were shared with other coronaviruses were more likely to have proliferated than killer T cells targeting peptides found only on SARS-CoV-2. The T cells targeting those shared peptide sequences had probably previously encountered one or another gentler coronavirus strain — and had proliferated in response, Davis said.
“Memory cells are by far the most active in infectious-disease defense,” Davis said. “They’re what you want to have in order to fight off a recurring pathogen. They’re what vaccines are meant to generate.”
Killer T cells whose receptors target peptide sequences unique to SARS-CoV-2 must proliferate over several days to get up to speed after exposure to the virus, Davis said. “That lost time can spell the difference between never even noticing you have a disease and dying from it,” he said.
To test this hypothesis, Davis and his colleagues turned to blood samples from COVID-19 patients. They found that, sure enough, COVID-19 patients with milder symptoms tended to have lots of killer-T memory cells directed at peptides SARS-CoV-2 shared with other coronavirus strains. Sicker patients’ expanded killer T-cell counts were mainly among those T cells typically targeting peptides unique to SARS-CoV-2 and, thus, probably had started from scratch in their response to the virus.